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Abstract

Background: Although extensive synonymy is one of the greatest strengths of the UMLS
Metathesaurus, much research has nonetheless focused on identifying and measuring gaps
in UMLS synonymy. This paper proposes a methodology for further extending the UMLS’
already rich synonymy by semi-automatically creating new strings not in the UMLS, and
including them as additional synonymous strings within existing UMLS concepts.

Results: In this paper we present our methodology for identifying missing UMLS syn-
onymy and semi-automatically creating synonyms to fill these gaps. We created an en-
hanced Metathesaurus supplemented by these strings, and improved the performance on
both biomedical literature and clinical text of two well known named-entity-recognition ap-
plications at the US National Library of Medicine, MetaMap and the Medical Text Indexer
(MTI).

Conclusions: Our methods propose first steps toward extending the already rich synonymy
of the UMLS by filling in some synonymy gaps. We further theorize that some of the newly
created strings could also be used to extend the Medical Subject Headings (MeSH) entry
terms, and thereby enhance MEDLINE indexing and PubMed queries by better reflecting
how authors actually refer to biomedical concepts in the literature.
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Introduction

The Unified Medical Language System R© (UMLS R©[58]) Metathesaurus R© [57] provided by
the US National Library of Medicine R© (NLM R©) is a multi-lingual database comprising
12M strings drawn from over 150 biomedical terminologies, and organized into over 3M
concepts, each with its own unique Concept Unique Identifier, or CUI. Grouping strings
into concepts is one of the most beneficial features of the Metathesaurus, because it provides
extensive synonymy that allows named-entity-recognition (NER) applications to map many
varied strings to the same UMLS concept. For example, all the strings Cardiac infarction,
Myocardial Infarction, myocardial necrosis, coronary attack , heart attack and sixty-five
others (in English alone) share the CUI C0027051, which means that in the UMLS, the
strings are synonymous.

The biomedical literature contains many articles dealing with synonymy, semantic simi-
larity, and semantic relatedness [20, 29, 43, 44, 45], but the research in this area most
often focuses on measuring and testing the semantic similarity and relatedness of existing
biomedical strings, rather than creating synonymous strings de novo. Hole and Srinivasan
[21] report work closer to ours in spirit, because one approach described therein infers term-
level synonymy via word-level synonymy, but that paper focused on detecting synonymy
of existing UMLS strings that were missed by UMLS editors. The work of Huang et. al.
first published in [22] and greatly expanded in [23], builds new synonyms using piecewise
synonymy or synonym substitution, which is very similar to our method, albeit on a much
smaller scale and for a completely different purpose—source-terminology integration, rather
than synonym-set expansion. Their work also uses no corpus validation, which ours does;
moreover, [23] constructs its piecewise synonyms using WordNet R©[36, 13], which is not a
specifically biomedical resource. Indeed, [23] specifically recommends “[e]xperimenting with
larger UMLS source terminologies”, which is precisely what we have done by using the en-
tire UMLS to generate our synonyms (over 2M strings in 1.5M concepts, rather than the
150K strings in 115K concepts of WordNet).

Our paper focuses on expansion of synonym sets, in particular for NER applications, a topic
with a long and distinguished history. Hearst [19] conducted one of the earliest studies
in which she developed a rule-based method (consisting of lexico-syntactic patterns) for
automatic acquisition of hyponymy relationships from text and a partial implementation
of the algorithm to augment a large, manually constructed thesaurus. The method does
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not extend well to meronymy but should extend to other relationships. Jacquemin et al.
[25] reported on an ambitious study of synonymy in the context of developing a system for
automatic generation of French indexing terms using NLP tools for part-of-speech tagging,
morphology and parsing. Three types of synonymy are defined, of which subsynonymy is
one; but only the other two were actually studied in the paper. Hamon et al. [18] describe a
preliminary, corpus-based study of synonymy detection for French technical text. The kind
of synonymy studied includes a specific form of subsynonymy limited to two-word terms but
also entails a broader notion of synonymy. Jacquemin [24] conducted a much broader study
defining a model for describing not only term variation including synonymy, but additional
morphological, syntactic and semantic variation as well. His experiments using multiple
corpora show high precision in extracting the model variants. Finally, Morin and Jacquemin
[37] performed a study, partly inspired by Hearst [19], describing a semi-automated system
for discovering single-word relationships from a corpus and then extending them to multi-
word relationships. The relationship used in the study is hypernymy.

One of the early papers involving the discovery of biomedical semantic relationships is Ver-
spoor et al. [60], which described a method of extracting hierarchical relationships using
the Gene Ontology (GO) for terms found in a corpus of MEDLINE R©abstracts (MEDLINE
is “the primary component of PubMed” [31], consisting of all and only those documents
for which MeSH indexing is available). Using synonymy in GO was left for future work.
A biomedical study of extracting synonym sets from MEDLINE/PubMed R© [47] was done
by McCrae and Collier [28], who devised a method of automatically generating regular
expressions by heuristic search, constructing feature vectors and subsequently extracting
synonym sets using the vectors. Their results (73.2% precision and 29.7% recall) out-
perform Wikipedia and MeSH R©, NLM’s vocabulary for indexing MEDLINE articles, but
perform significantly less well than the UMLS. Tsuruoka et al. [56] present an interesting
study of biomedical synonymy formulated as a normalization task. They automatically
discover normalization rules using an iterative process designed to minimize ambiguity and
variability of discovered terms. In a study somewhat related to the current work, Grabar
et al. [16] define a method for automatic acquisition of elementary synonyms via analysis
of complex, multiword synonyms in GO. And in a subsequent study Grabar et al. [17] de-
fine a language-independent method using syntactic analysis and compositionality to infer
word-level synonymy from term-level synonymy. They apply this method to the French
subset of the Metathesaurus. A more recent study of biomedical synonymy which is more
relevant to our current work is the extremely ambitious, brilliantly illustrated, and broad-
ranging article by Blair et al. [8], which quantifies the extent of missing Metathesaurus
synonymy, and therefore meshes well with our work, which attempts to fill some of these
gaps in Metathesaurus synonymy.

The work described in this paper differs from previous research in synonym-set expansion
in that it relies on no morphological, lexical, syntactic, or semantic rules. Rather, our new
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synonyms are derived from a well-known, richly documented, and universally accessible set
of English biomedical terms—the UMLS Metathesaurus, and created through a knowledge-
based method supplemented by corpus-based validation.

The initial set of expansion strings is then pruned to the most-likely useful subset using the
largest available relevant target corpus (PubMed). Moreover, as we explain in the Methods
Section, we test the effectiveness of our method using three biomedical corpora—two drawn
from the biomedical literature, and the third from clinical text.

In the remainder of this paper, we describe a semi-automated method of creating new
synonyms of existing UMLS strings in order to improve the performance and reduce the
ambiguity of results generated by NLM’s MetaMap [5] and Medical Text Indexer (MTI)
[40, 39, 38], which are well-known NER applications. We now present in some detail the con-
struction of these new synonymous strings, outline our experimental results, and conclude
with a discussion of potential next steps.

Methods

In this section, we introduce our approach by presenting several examples of missing Metathe-
saurus synonymy and describe our methods for creating missing synonyms.

Working Examples

We begin with two examples of our technique, which extends Metathesaurus synonymy by
creating new strings via an analysis of substring synonymy, or subsynonymy . Subsynonymy
can best be illustrated using the following two canonical examples:

(1) The two strings geriatric and elderly are synonyms because they share CUI C1999167.
Moreover geriatric patients is a string in C0870602. However, the string resulting from
substituting elderly for geriatric, namely, elderly patients, does not occur in the UMLS,
even though it occurs nearly 46,000 times in titles or abstracts of PubMed citations (as of
this writing; the number will change over time)—nearly ten times as often as the existing
UMLS string geriatric patients. We therefore propose elderly patients as a derived synonym
of geriatric patients in CUI C0870602.

(2) Similarly, although medications and drugs are synonyms in C0013227, and New med-
ications is a string in C1718097, New drugs is not in the UMLS, even though that string
occurs over 16,000 times in PubMed—more than fifteen times as often as the existing UMLS
string New medications. As with the previous example, we propose New drugs as a derived
synonym of New medications in CUI C1718097.
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We now describe the construction of new, synthetic subsynonymy strings not in the UMLS
that are synonyms of existing Metathesaurus strings; Figure 1 illustrates the steps described
below.

Insert Figure 1 here

MRCONSO Extract

We first extract from the MRCONSO.RRF UMLS file [34] a unique list of pairs of
CUI | String
in which the strings are

• ASCII

• English (i.e., LAT == "ENG")

• of length between 5 and 50 characters,

• composed of only alphanumerics and whitespace, and

• normalized to lowercase.

This MRCONSO extract contains 2.36M CUI/String pairs, and 2.30M distinct strings,
which represents over 30% of all case-normalized English strings in the Metathesaurus. We
impose these limitations for several reasons:

• Our downstream applications (MetaMap and MTI) process ASCII English text only,
and are not case sensitive,

• strings shorter than 5 characters tend to exhibit excessive ambiguity, and

• strings longer than 50 characters or containing punctuation are less likely to be iden-
tified by our applications, or, for that matter, to appear in the biomedical literature.

Synonym Database

Next, we create from the MRCONSO extract a Synonym Database of triples
CUI: Synonym1 = Synonym2

for every CUI and every pair of distinct strings in that CUI. E.g., a few of the synonym
triples for C1999167 are
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C1999167: elderly = geriatric
C1999167: elderly = old age
C1999167: elderly = senescence
C1999167: elderly = senium
C1999167: geriatric = old age
C1999167: geriatric = senescence
C1999167: geriatric = senium
C1999167: old age = senescence
C1999167: old age = senium
C1999167: senescence = senium

We generated 2.38M such triples. The number of triples is lower than one might expect
because

• over 1M of the CUIs in the extract (> 43 %) contain only one string, and therefore
do not appear in the Synonym Database at all, and

• another 287,000 CUIs (> 12%) contain only two strings, and therefore appear only
once.

The Synonym Database will be available at our “Datasets & Test Collections” website [55]
under “Subsynonymy Datasets” upon publication.

Superstring Database

We then generate from the MRCONSO extract a Superstring Database of triples
Substring | Superstring | SuperstringCUI
for all substring/superstring pairs of Metathesaurus strings, subject to the constraint that
the substring be bounded by the beginning/end of the superstring or a non-alphanumeric
character. For example, some Metathesaurus superstrings of geriatric are geriatric patients,
assessment geriatric, and non-urgent geriatric admission, but not geriatrician, psychogeri-
atric, or psychogeriatrician. There were 5.8M such superstring triples. The Superstring
Database will also be available at our dataset website [55] upon publication.

Retrieve Superstrings

Next, for each entry in the Synonym Database
CUI: Synonym1 = Synonym2

e.g.,
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C1999167: elderly = geriatric
and its reverse, i.e.,
C1999167: geriatric = elderly
we retrieve from the Superstring Database all superstrings of Synonym1 along with those
superstrings’ CUIs:

geriatric patients|C0870602
assessment geriatric|C0017463
non-urgent geriatric admission|C0420534

Create New Synthetic Strings

Finally, in each superstring, we replace Synonym1 with Synonym2, as shown in Table 1,
thereby creating a collection of new, synthetic strings, which we will call subsynonymy

Table 1: Creating Subsynonymy Strings Using geriatric/elderly Synonymy

CUI Original Metathesaurus String New Subsynonymy String
C0870602 geriatric patients elderly patients
C0017463 assessment geriatric assessment elderly
C0420534 non-urgent geriatric admission non-urgent elderly admission

strings, and save all such subsynonymy strings that are not already in the Metathesaurus,
along with their CUIs.

Need for Filtering

Although the processing described above creates strings that are not in the Metathesaurus,
and are therefore potential candidates for filling a synonymy gap in a specific CUI, we could
not simply keep all the subsynonymy strings generated because of their enormous volume:
We created over 40M distinct triples such as those shown in Table 1—over five times the
number of distinct case-normalized English strings in the entire Metathesaurus, and over
seventeen times the number of such strings in the MRCONSO extract described in the
MRCONSO Extract Section above; extensive filtering was obviously necessary. We next
describe briefly several stages of filtering designed to retain only those strings most likely
to be useful for biomedical NER; each stage is then explained in more detail.

• Exclude strings not appearing in PubMed: For example, the prospective subsynonymy
string lower abdominalgia, generated from lower abdominal pain in C0232495 because
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of the synonymy of abdominal pain and abdominalgia, does not appear in PubMed,
so it is excluded.

• Exclude strings exhibiting spurious word duplication: The prospective subsynonymy
string swelling swelling , generated from edema swelling in C0474434 because of the
synonymy of edema and swelling , contains spurious duplication of swelling , so it is
excluded.

• Exclude strings exhibiting redundant linguistic variation: The prospective subsyn-
onymy string tumour marker , generated from tumor marker in C0041365 because of
the synonymy of tumor and tumour , is simply a linguistic variant of tumor marker ,
so it is excluded. MetaMap’s extensive knowledge of linguistic variation, mentioned
below in the Linguistic Variation Section makes such variants unnecessary.

• Exclude false positive synonyms discovered via manual inspection: The prospective
subsynonymy string caucasian cells, generated from white cells in C0023508 because of
the synonymy of white and caucasian, is a manually detected false positive synonym,
so it is excluded (the string caucasian cells occurs in PubMed (in PMIDs 158862 and
25358733), but obviously does not denote leukocytes.)

All excluded strings, grouped by exclusion criterion, will be available on our dataset website
[55] upon publication. We now explain each filtering strategy in more detail, with additional
examples.

PubMed Filtering

A simple measure of the potential usefulness of a string for performing NER is its frequency
of occurrence in a corpus. We considered measuring the subsynonymy strings’ frequency
by using either automated queries to an internet search engine (e.g., Bing [7]) or Google’s
Ngram data [15, 35], but decided against those approaches because we are interested in
determining the subsynonymy strings’ frequency specifically in biomedical text.

We decided instead to use the NCBI [41] E-Utilities [51] to determine the frequency of each
subsynonymy string in the 25M citations in PubMed, because that method would provide
text focused on biomedicine. In addition, we were able to generate PubMed citation counts
using the E-Utilities for all 40M subsynonymy strings in less than half an hour by running 30
parallel processes, and determined that 235,000 of the subsynonymy strings actually appear
in PubMed, as do 364,000 of the corresponding original UMLS strings (i.e., the strings in
the second column of Table 1), and 687,000 strings in the 2.36M-string MRCONSO extract
described in the MRCONSO Extract Section. The full set of subsynonymy strings and
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their counts will be available on our dataset website [55] upon publication. For compari-
son purposes, Table 2 presents the document (i.e., PubMed citation) frequency of (a) the
subsynonymy strings, (b) the original UMLS strings, and (c) the strings in the MRCONSO
extract.

Table 2: PubMed Document Frequency

Document Subsynonymy Original Strings in
Frequency Strings UMLS Strings MRCONSO Extract

100+ 30463 (12.94%) 80675 (22.14%) 154310 (22.47%)
500+ 8191 (3.48%) 32900 (9.03%) 76811 (11.18%)

1000+ 4168 (1.77%) 20402 (5.60%) 55039 (8.01%)
5000+ 636 (0.27%) 5099 (1.40%) 23679 (3.45%)

10000+ 254 (0.11%) 2377 (0.65%) 16232 (2.36%)

We were pleased to realize that over 4,100 of the 235,000 subsynonymy strings appearing
in PubMed were found in at least 1,000 PubMed Citations, and 254 in at least 10,000.

Although the subsynonymy strings exhibit somewhat lower PubMed frequency than do the
original UMLS strings and the strings in the MRCONSO extract, their frequency is nonethe-
less encouraging. Moreover, we know that their distribution does not consist simply of a
long tail of low-frequency items, because, as we demonstrate in the Results and Discussion
Section, their frequency is sufficient to have a measurable effect on NER.

We deliberately applied this automatic PubMed filtering step first, because it eliminated
> 99% of the initial set of strings, thereby making the later, non-automatic filtering steps
described next far more tractable.

Semi-Automatic Filtering

Spot checking of the subsynonymy strings quickly showed that several classes of strings
needed to be excluded, as we now explain in greater detail.

Spurious Word Duplication
Manual review of the subsynonymy strings revealed a number of strings exhibiting spurious
word duplication: For example, given the string surgery procedure in C0944781 and the
synonym pair surgery/surgical procedure in C0543467, substituting the latter synonym for
the former yields the infelicitous string surgical procedure procedure. A vast majority of
these strings containing repeated words appear in PubMed with punctuation separating
the two identical words, e.g., a standardized 60-minute surgical procedure (procedure 2) in
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PMID 16135206. To perform this filtering, we simply identified all subsynonymy strings
containing adjacent identical words, and manually reviewed the 230 strings thus found,
discarding 87 in all. The manual review was necessary because we would not want to
discard strings containing valid examples of repeated words such as drug drug interaction,
infantile beri beri , or protein protein domain.

Redundant Linguistic Variation
Next, we also excluded many subsynonymy strings that differ from existing Metathesaurus
strings only via simple linguistic variation, because MetaMap already includes extensive
logic based on the NLM’s Lexical Variant Generation [42] that enables identification of
UMLS concepts via a wide variety of linguistic variants. For example, we discarded the
three strings signaling pathways, drug sensitisation, and right ventricular because (1) the
Metathesaurus already contains signaling pathway , drug sensitization, and right ventricle,
and (2) MetaMap would not need these additional synonyms to identify the original con-
cepts. Excluding new strings exhibiting close linguistic similarity to existing strings removed
nearly half our candidate subsynonymy strings, leaving us with about 125,000. Retaining
all strings regardless of linguistic variation, however, would probably be advisable for down-
stream projects that depend on exact string matches or do not benefit from the use of the
rich lexical variant generation that MetaMap enjoys.

False Positive Synonyms
Spot-checking the data suggested the need to check for false positive synonyms, so we then
undertook a manual review of two samples of the remaining 200,000 strings: (1) The 6,500
strings most frequently occurring in PubMed (about 3% of the total), and (2) A stratified
sample of another 6,500 strings (every thirtieth string).

This manual review revealed several classes of false positives, including some amusing
ones due to vernacular synonyms of Methamphetamine such as crystal , glass and speed
in MedlinePlus R© [32]:

• urine crystal → urine speed

• eye glass → eye speed

• reading glass → reading speed

• crystal healing → speed healing

Examination of the original synonym pairs (e.g., crystal/speed , glass/speed) of these false
positives suggested that most of them tended to be (1) common English words and/or (2)
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semantically ambiguous. We accordingly identified all subsynonymy pairs based on original
synonyms that are either (1) among the 10,000 most frequent words (excluding stopwords)
in MEDLINE [27], or (2) in multiple Semantic Groups [59] (more formally, in CUIs whose
associated Semantic Types [52, 10] are in multiple Semantic Groups).

Using the first example above, both crystal and speed are among the 10,000 most frequent
MEDLINE words. Moreover, crystal is a string in C0025611 and C1704641, and those
CUIs are in multiple Semantic Groups: CHEM (Chemicals & Drugs) and OBJC (Objects).
Similarly, speed is a string in C0025611 and C0678536, and those CUIs are in multiple
Semantic Groups: CHEM and CONC (Concepts & Ideas). Crystal and speed therefore
meet both criteria of MEDLINE frequency and Semantic-Group ambiguity.

Manual review of the 78,000 synonym pairs meeting both criteria revealed 2,500 legitimate
false positives, which we removed from the set of subsynonymy strings. Finally, we removed
a large number of spurious duplicates; for example, we created the subsynonymy string be-
nign gastrointestinal tumors in C0497538 twenty different ways, but obviously just one was
sufficient. After removing duplicates, we were left with 114,000 distinct case-normalized
strings, and 142,000 CUI/String pairs in 63,000 CUIs. Those numbers show that several
thousand subsynonymy strings appeared in multiple CUIs, leading to increased string am-
biguity, but we will show in the Reduced Ambiguity Section that any increase in string
ambiguity is outweighed by the increased synonymy, and, perhaps counter to intuition, by
significant reduction in the ambiguity of our results.

From this set of 114,000 subsynonymy strings, we constructed a synthetic vocabulary called
NLMSubSyn, which we merged into a local copy of the UMLS MRCONSO.RRF file, and
then created the MetaMap datafiles [33] from this augmented version of MRCONSO.RRF.

Results and Discussion

We next explain our strategy for testing the effect of the NLMSubSyn vocabulary on the
performance of MetaMap and MTI on both the biomedical literature and clinical text,
present our results, and conclude this section with a discussion of potential benefits of this
work to MeSH.

One potential drawback resulting from the addition of 114,000 new strings to our data is
a possible increase in runtime for MTI and MetaMap; however, because the 114,000 terms
represent less than a 2% increase in the number of English strings used by MetaMap, we
are happy to report no observable change in runtime due to the additional strings.
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Experiments on Biomedical Literature

Our first experiment used MTI, NLM’s application which uses MetaMap and other tech-
niques to map English biomedical text to MeSH, and its test collection [40, 39, 38], which
consists of 144,000 randomly selected and recently indexed MEDLINE articles (updated
each year) used to train MTI and evaluate changes made to the system throughout the
year. We ran MTI twice on the collection: once using the MetaMap datafiles including the
NLMSubSyn vocabulary, and a second time using the datafiles excluding the NLMSubSyn
vocabulary, to measure the effect of the subsynonymy strings on MTI processing. This ini-
tial test resulted in an observable and useful, albeit modest, increase in precision (+0.01%),
recall (+0.01%), and F1 (+0.02%) due to the subsynonymy strings, as shown in Table 3. We

Table 3: MTI Test Collection Results

SubSyn? Precision Recall F1

Without 63.53% 62.70% 63.11%
With 63.54% 62.71% 63.13%

were at first disappointed with the results, but further investigations revealed that a number
of factors severely constrained any possible improvement in performance: (1) Adding our
NLMSubSyn vocabulary to the MRCONSO.RRF file resulted in less than a 2% increase in
the total number of English strings; (2) Of the 114,000 distinct subsynonymy strings, fewer
than 20,000 appeared in the MTI test collection at all; (3) Of those, fewer than 14,000
are mapped to MeSH by NLM’s Restrict-to-MeSH algorithm [9, 50]; (4) Only 11,000 of
the remaining strings are not subject to MTI’s heavy filtering, which excludes very general
MeSH headings (e.g., Patients); and finally, (5) MTI’s performance results from over a
decade of fine-tuning, extensive filtering, and algorithmic enhancements, thereby making it
extremely difficult to deliver significant improvements in precision/recall. Moreover, given
the large volume of MEDLINE citations processed by MTI each year, any improvement in
performance, however slight, is nonetheless extremely valuable. In summary, given that less
than 10% of the subsynonymy strings are potential candidates for MeSH indexing, and that
these strings therefore represent less than a 0.2% increase in the number of strings available
for MeSH indexing, the modest improvements are perhaps not surprising.

Modest as these results may be, however, our technique offers two additional benefits: (1)
The subsynonymy strings fill some glaring lacunae in Metathesaurus synonymy, such as el-
derly patients, as described in the Working Examples Section above. (2) they are also very
useful for assistance with MeSH indexing, which is MTI’s purpose: MTI automatically pro-
vides NLM’s MeSH indexers with suggestions for MeSH headings for approximately 750,000
MEDLINE citations each year, and the improved MTI performance due to subsynonymy
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should result in over 1,000 additional correct MeSH-heading recommendations each year.

Our next testing step was designed to verify that the subsynonymy strings could in fact lead
to a more significant performance improvement. To test this hypothesis, we again used the
NCBI E-Utilities to create a corpus of all PubMed citations (regardless of publication date)
containing at least one subsynonymy string. Our results are very encouraging: Over 7M
PubMed citations (nearly 30% of all PubMed) contained at least one subsynonymy string,
and over 104,000 citations contained at least five. A complete listing of subsynonymy strings
with the PMIDs in which they were found will be available at our dataset website [55] upon
publication. From this collection of citations guaranteed to contain at least one subsyn-
onymy string, we automatically created a focused sample of the most subsynonymy-rich
citations by selecting all those documents (1) for which MeSH indexing was available (i.e.,
in MEDLINE), and (2) containing at least five subsynonymy strings; applying these criteria
yielded a collection of 95,000 MEDLINE documents, which we will henceforth refer to as
the focused collection. We emphasize that the focused collection was constructed com-
pletely independently from the MTI test collection; indeed the intersection of the focused
collection and the 144,000-citation MTI test collection consists of only 940 documents.

As before, we then ran MTI twice on the focused collection, and observed a much more
dramatic improvement in precision (+0.13%), recall (+0.16%), and F1 (+0.15%) due to
the subsynonymy strings, as shown in Table 4, representing over 2,100 additional MeSH
headings correctly identified. In order to estimate the standard error associated with the

Table 4: Focused Collection Results

SubSyn? Precision Recall F1

Without 58.71% 63.44% 60.98%
With 58.84% 63.60% 61.13%

improvements observed in the analysis of the focused collection, we then computed pre-
cision, recall, and F1 on 1,000 bootstrap samples with replacement, each consisting of 1,000
citations randomly selected from the focused collection. We present the mean and stan-
dard deviation (σ) of precision, recall, and F1, computed as usual both with and without the
subsynonymy strings, in Tables 5 (using micro averaging) and 6 (using macro averaging).

Macro averaging, which gives equal weight to each MeSH heading identified, shows greater
improvement, which is probably understandable because in micro-averaging, which gives
equal weight to each per-document decision, the contribution of the relatively few sub-
synonymy strings added is less visible among the average of approximately 10 MeSH main
headings assigned to each MEDLINE document (see the third column (“Min/Avg/Max Oc-
currences”) of the “MeshHeading” and “DescriptorName” rows of [30], which show that an
average of 10.16 MeSH headings are assigned to documents in the 2015 MEDLINE Baseline
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Table 5: Micro-Averaged P/R/F1 Statistics for Focused Collection

SubSyn?
Precision Recall

F1Mean σ Mean σ
Without 58.72% 0.46 63.45% 0.52 60.99%
With 58.84% 0.46 63.61% 0.51 61.13%

Table 6: MACRO-Averaged P/R/F1 Statistics for Focused Collection

SubSyn?
Precision Recall

F1Mean σ Mean σ
Without 58.93% 0.47 65.32% 0.52 61.96%
With 59.07% 0.47 65.49% 0.52 62.11%

[26]).

Although the subsynonymy strings contributed to performance improvement for both the
MTI test collection and the focused collection, as shown in Tables 3 and 4, respectively,
it is perhaps surprising that MTI performed better on the test collection (Table 3) than the
focused collection (Table 4)—independently of any improvements due to subsynonymy.
The lower performance of the focused collection, however, has a sound explanation that
is due entirely to precision: Although the recall observed for the focused collection is
somewhat greater than that for the MTI test collection (because of the intentionally greater
frequency of subsynonymy strings), the focused collection’s precision is significantly lower
than the MTI test collection’s—for two reasons: (1) As noted above, the MTI test collection
consists of MEDLINE citations that are no more than a year old, and therefore recently
indexed; furthermore, the collection is used throughout the year to train MTI and improve
its results (mainly precision), and the results presented in this paper were generated late
in the year, after nearly a full year of continuous training and improvement, when MTI’s
performance was at its peak. (2) The focused collection, by contrast, is drawn from all
of MEDLINE, regardless of publication date; consequently, the average indexing year of the
citations in the focused collection is 2001 (the oldest dates back to 1965!), so its MeSH
indexing is far from current. Moreover, as NLM indexing policy changes over time, MTI
processing is modified accordingly, but previously indexed citations are never re-indexed,
which necessarily adversely affects MTI’s performance on older documents.
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Experiments on Clinical Text

To test the effect of the subsynonymy strings on clinical text, we used the 298 clinical
notes in the ShARe corpus and their annotations from Task 7 of SemEval-2014 [54, 46, 53].
The annotations provide 7,776 disorder mentions along with the disorders’ CUIs and the
text spans in the note pinpointing the location in the text of the disorder mention, which
provided the gold standard for the clinical experiments. A simplified form of the annotations
for document ID 00098-016139 is shown below:

00098-016139|C0149651|1218|1226
00098-016139|C0010520|1228|1236
00098-016139|C0013604|1241|1246
00098-016139|C0917996|1327|1344
00098-016139|C1290398|1389|1392|1412|1420

The first annotation line above shows that in document 00098-016139, human annota-
tion identified the UMLS Metathesaurus concept whose CUI is C0149651 in text spanning
character positions 1218 and 1226. Our initial processing of the clinical notes was similar
to that of the MEDLINE citations described above, but used MetaMap instead of MTI,
because our gold standard for this collection consists of UMLS concepts, and not MeSH
headings. We ran MetaMap twice on each note (as before, once with and once without the
subsynonymy strings), but this time conforming to the SemEval-2014 task 7 guidelines [54],
which restricted annotations to UMLS concepts in the Disorder Semantic Group [59]. We
used MetaMap to generate Fielded MetaMap Indexing (MMI) Output [14], and retained
only those concepts whose lexical category was noun.

We then calculated MetaMap’s performance against the ShARe corpus gold-standard anno-
tations, counting as true positives those MetaMap results that matched the gold-standard
annotations as follows: (1) exact CUI match, and (2) at least a partial text-span match.
The results of this initial experiment are shown in Table 7. To measure the influence on our

Table 7: Clinical Results (strict)

SubSyn? Precision Recall F1

Without 47.90% 64.55% 54.99%
With 47.43% 63.96% 54.47%

results of common, frequently occurring terms, we also calculated the same performance
measures restricting the results to unique occurrences of terms in a given document; these
results are shown in Table 8, and, as expected, show somewhat lower performance than
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the results in Table 7, but the difference in performance is not so great as to suggest that
commonly occurring terms exert an undue influence on the results reported above. We

Table 8: Clinical Results (strict; unique occurrences)

SubSyn? Precision Recall F1

Without 46.70% 61.93% 53.25%
With 45.94% 61.39% 52.55%

were obviously disappointed that the subsynonymy strings did not lead to improved per-
formance, but a detailed review of MetaMap’s false positives revealed that many of them
identified a concept similar to the gold standard’s—albeit in a different CUI. For exam-
ple, from the text upper extremity deep vein thrombosis in document 05163-019624,
MetaMap did not identify the gold standard’s deep vein thrombosis, finding instead the
more specific upper extremity deep vein thrombosis. More examples of this phenomenon are
presented in Table 9. In order to analyze the reduced performance due specifically to these
partial matches, which our scoring methodology counted as false positives and negatives,
we reviewed all 261 false positives occurring only in the analysis with the subsynonymy
strings by examining their appearance in the original clinical documents, and determined
that 187 of them are actually true positives that were either (1) not annotated at all, or
(2) annotated, but identified as one of the 3,391 “CUI-less” annotations, which we ignored
in our original calculations, because they could not provide a CUI match. In these cases,
the subsynonymy strings provided a synonym that enabled MetaMap to map text to a
specific disorder and CUI, which the human annotators were not able to do, presumably
because the original text was not sufficiently close to any existing Metathesaurus string to
be recognized as a Metathesaurus concept. Similarly, we reviewed the text spans of 64 false
negatives occurring only in the analysis with the subsynonymy strings and found 62 cases
in which MetaMap had in fact identified a concept with an overlapping span, albeit not
the one in the gold standard. Relaxing our criteria to count such partial matches as true
positives, the results using the subsynonymy strings are significantly improved, as shown in
Table 10.

We also noted that when the concept identified by MetaMap provided more specific infor-
mation than the gold standard’s, such as the deep vein thrombosis example presented above
and the other cases presented in Table 9, MetaMap did find the gold standard’s concept
as well, but discarded it in favor of the longer concept with greater phrase coverage, and
therefore a higher score, as described in [4].

Our experiments with the clinical text showed appreciably greater improvements than those
in the biomedical literature for two reasons: (1) Processing the biomedical literature using
MTI involves extensive filtering of results, which the clinical experiments do not, because
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Table 9: ShARe Corpus: Gold Standard vs. MetaMap

Document Gold Standard Concept MetaMap Concept
07429-001857 pain pain in extremities
17467-010718 fracture fracture of hip
09339-028983 cataract bilateral cataract
07352-013977 dysplasia high grade dysplasia
25003-338492 pneumonia right lung pneumonia
24786-014472 dizziness dizziness of unknown cause
19138-025729 atrial fibrillation Intermittent atrial fibrillation
02115-010823 strokes multiple strokes
11439-014138 anemia severe anemia
00381-006281 wound abdominal wound
17467-010718 fracture fracture of hip
21413-012450 Hemangioma Hemangioma of the liver
02136-017465 stenosis left anterior descending artery stenosis
20701-013632 abdominal pain left upper quadrant abdominal pain
09339-028983 cataract bilateral cataract
19138-025729 tenderness calf tenderness
00534-017453 bicuspid aortic valve congenital bicuspid aortic valve
05163-019624 deep vein thrombosis upper extremity deep vein thrombosis
17652-018982 upper extremity weakness right upper extremity weakness
01314-028800 displaced fracture displaced fracture of proximal phalanx left thumb

Table 10: Clinical Results With Relaxed Matching Criteria

SubSyn? Precision Recall F1

Without 47.90% 64.55% 54.99%
With 49.51% 65.58% 56.42%

they were carried out simply using MetaMap. (2) The clinical experiments were restricted
to results in the Disorder Semantic Group, which allowed much more targeted processing.

Reduced Ambiguity

Ambiguity is arguably one of the leading bêtes noires of NER systems. Although the
improved accuracy resulting from the subsynonymy strings is certainly helpful, we expect
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that a greater benefit will result from the reduced ambiguity of results generated using the
subsynonymy strings. We next explain why the addition of the subsynonymy strings leads
to reduced ambiguity and provide a number of examples, and then present statistics showing
the effect of the reduced ambiguity on the analysis of the focused collection described
earlier.

To demonstrate the reduction in ambiguity due to the subsynonymy strings, we performed
two experiments: First, we ran MetaMap twice on each of the subsynonymy strings them-
selves using the same strategy as described in the previous section: once using our now-
enhanced data including the NLMSubSyn vocabulary, and a second time excluding the
NLMSubSyn vocabulary. The run without the new NLMSubSyn vocabulary showed over
300% more ambiguity on average than the run including the NLMSubSyn vocabulary. The
explanation is clear: The subsynonymy strings exhibit far less ambiguity than their com-
ponent substrings. For example, using the subsynonymy-enriched data, MetaMap correctly
maps the subsynonymy string life threatening ventricular tachycardia to a single UMLS
concept (C1556245). Without the subsynonymy data, however, the entire string is not
mapped to a single concept; the two substrings that are mapped, however, life threatening
and ventricular tachycardia, exhibit three- and fourfold ambiguity, respectively, and are
therefore each mapped to multiple concepts [3], as shown in Table 11. MetaMap’s mapping

Table 11: Reduced Ambiguity

SubSyn? CUI String
With C1556245 life threatening ventricular tachycardia

C2826244 Life Threatening
C1517874 LIFE THREATENING
C1546953 Life threatening

Without C3537125 LIFE THREATENING
C0042514 TACHYCARDIA, VENTRICULAR
C0344428 VENTRICULAR TACHYCARDIA
C1963247 Ventricular tachycardia

algorithm [2] then computes the Cartesian product of the sets of concepts identified in the
two substrings, and produces the highly undesirable result of twelve final mappings (each
final mapping represents MetaMap’s best interpretation of the text analyzed, and consists
of a subset of the set of concepts identified). Subsynonymy in this case clearly produces
a vastly improved, more specific, and more compact final result: one concept covering the
entire phrase, rather than twelve distinct combinations of smaller concepts. Such ambiguity
is hardly atypical: When we ran MetaMap on the subsynonymy strings themselves as in-
put, but excluding the NLMSubSyn vocabulary from our data, over 4% of the subsynonymy
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strings exhibited at least tenfold ambiguity; the worst offenders are the two strings Radi-
ation treatment groups and Surfactant combinations, which each generate over 200 final
mappings when run without the NLMSubSyn strings, instead of just one each, because of
the extreme ambiguity of their component substrings. The cause of the reduced ambiguity
may be evident, but the extent of the reduction is nonetheless remarkable.

Our second, and more significant, ambiguity experiment involved analyzing the results
generated from the focused collection. As described earlier, we ran MetaMap twice on
the entire collection (once with the subsynonymy strings and again without them), and
then computed (1) the number of final mappings generated, and (2) the number of concepts
appearing in them. The results presented in Table 12 show a 7.65% reduction in the number
of final mappings, and a 13.09% reduction in the number of concepts participating in the
final mappings.

Table 12: Focused Collection Ambiguity Results

SubSyn? # of Final Mappings # of Concepts in Mappings
Without 25.74M 79.68M
With 23.77M (-7.65%) 69.25M (-13.09%)

Next Steps

Some future plans for extending UMLS subsynonymy research include the following:

1. Improving false-positive detection, perhaps via crowdsourcing, e.g., via Amazon Me-
chanical Turks [1].

2. Expanding subsynonymy generation to include British/American variants of prospec-
tive subsynonymy strings.

3. Expanding the MRCONSO extract beyond alphanumeric/whitespace strings.

4. Exploring an idea proposed in [21] and similar to a strategy presented in [6] for dis-
covering missed synonymy by eliminating shared words in synonym pairs. E.g., family
members died and relatives died are synonyms in C0425043; eliminating the shared
word died suggests the synonymy of family members and relatives; however, although
those two strings both appear in the Metathesaurus (in C0086282 and C0080103, re-
spectively), no CUI contains them both, so they are not currently synonyms in the
UMLS. In fact, this is an excellent example of undocumented UMLS synonymy as
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discussed in [8]. Adding each string to the other’s concept before generating the syn-
onym list described at the beginning of the Methods Section might further reduce
ambiguity and increase recall.

5. Bootstrapping our process by recursively applying all the logic described above: In-
stead of starting from the out-of-the-box MRCONSO.RRF file, we would instead use
the MRCONSO file augmented with the subsynonymy strings.

6. PubMed searches are carried out using an indexed phrase list created and maintained
by NCBI, as explained in the “Default Boolean Combinations and Phrase Searching”
section of [11]. Constructing our own phrase list, or, more realistically, supplementing
NCBI’s list with any of our candidate subsynonymy strings not already included, could
identify additional subsynonymy strings that are not in PubMed, because PubMed
returns no results for strings that are not in the indexed phrase list—even if they do
appear in PubMed.

7. Potential Benefit to MeSH: After analyzing these subsynonymy strings and their dis-
tribution in Metathesaurus source vocabularies, we also realized this work could lead
to potential long-term benefits for MeSH, and, in particular, MeSH indexing. Our
processing added nearly 800 subsynonymy strings, each appearing at least 500 times
in PubMed, to CUIs containing a MeSH main heading; because of the rich overlap of
our subsynonymy strings with MeSH, we are pursuing two aspects of this work that
could benefit MeSH:

(a) Some of these new subsynonymy strings might serve as potential indicator phrases
for our indexing-assistance tool MTI. For example, consider the subsynonymy
string preterm babies, which was created from the original UMLS string preterm
infants in C0021294 because of the synonymy of infants and babies in C0021270.
The subsynonymy string occurs in the title or abstract of a citation 1,346 times
in PubMed1 and 1,207 times in MEDLINE2; however, 995 of those 1,346 PubMed
citations lack the original UMLS string preterm infants3 as do 899 of those in
MEDLINE.4 In analyzing those citations that contain preterm babies but not
preterm infants, the subsynonymy string preterm babies could prove to be a use-
ful indicator for MTI: If MTI finds the phrase preterm babies in the text, it is
very likely a good indication that MTI should recommend the MeSH main head-
ing Infant, Premature. We can validate this assumption by querying PubMed to
determine how often indexers recommended Infant, Premature when (a) preterm
babies occurs in the title or abstract, but (b) preterm infants does not: We find
that indexers chose the MeSH heading Infant, Premature5 in 509 of those 899
MEDLINE citations (56.62%), thereby showing that preterm babies would indeed
be a good indicator phrase for MTI to use in recommending Infant, Premature.
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(b) MeSH defines MeSH entry terms as “synonyms, alternate forms, and other closely
related terms in a given MeSH record that are generally used interchangeably
with the preferred term for the purposes of indexing and retrieval, thus increas-
ing the access points to MeSH-indexed data” [12]. A large number of our new
subsynonymy strings represent how authors denote real-world biomedical entities
in PubMed, so including some of them as MeSH entry terms might prove use-
ful. For example, the subsynonymy string robotic surgery , found 2,449 times in
PubMed and 1,785 times in MEDLINE, could be a good candidate for inclusion
as a MeSH entry term for the MeSH main heading Robotic Surgical Procedures.
Expanding the list of MeSH entry terms for a given MeSH main heading could
help in two ways: (1) Provide more indexing consistency by the human indexers,
because there would now be additional defined MeSH terms exactly matching
the actual phrases found in the text, and (2) Improve PubMed Automatic Term
Mapping [48, 49] by using these new subsynonymy strings to map additional
user query terms to specific MeSH terms, which should improve search results
by providing more relevant articles to users executing PubMed queries.

Conclusions

This paper has described a UMLS synonymy-based technique of creating strings that ap-
pear in PubMed, but are not in the UMLS, and are therefore potentially useful for increas-
ing coverage and recall, and reducing ambiguity of biomedical NER applications such as
MetaMap and MTI. Even with a relatively small addition of only 142,000 CUI/string pairs
(less than a 2% augmentation in the number of English CUI/strings pairs in the UMLS MR-
CONSO.RRF file), we were able to report improved performance and reduced ambiguity
for both literature and clinical data.
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Notes

1PubMed query: "preterm babies" [tiab]

2"preterm babies" [tiab] AND MEDLINE [sb]

3"preterm babies" [tiab] NOT "preterm infants" [tiab]

4"preterm babies" [tiab] NOT "preterm infants" [tiab] AND MEDLINE [sb]

5"preterm babies" [tiab] NOT "preterm infants" [tiab] AND MEDLINE [sb] AND "Infant, Premature"

[mh:noexp]
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